NEW: ERICA CHENOWETH-Non-Violent Protests On the March – Why They Work

Written on August 10th, 2019
June 25th NYTimes headline: “2019 might be the year of the protest” – mass demonstrations in Prague, Hong Kong, Russia, Kazakhstan, and the UK. The President of Algeria, the President of Sudan, and Governor of Puerto Rico leave office after protests. What’s going on? Why are nonviolent protests working? And what might that mean for us here in the US where the global climate movement has called for a general strike September 20th? I speak with ERICA CHENOWETH, Professor at Harvard’s Kennedy School and author of WHY CIVIL RESISTANCE WORKS: The Strategic Logic of Nonviolent Conflict.
About

Disruptive #10: Sports Genomics

Written on April 23rd, 2017

DISRUPTIVE #10: Sports Genomics

McNally:
Hello, I’m Terrence McNally and you’re listening to DISRUPTIVE the podcast from Harvard’s Wyss Institute for Biologically Inspired Engineering. 

Can sneaker endorsements, cereals, protein powders or electrolyte cocktails get any of us closer to the peak level performance of our favorite athletes? Despite billions in sales, the answer is probably no. But how about an elite athlete’s biology?

With 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1, and bacteria in our gut affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude.

What if we could tap the gut bacteria of elite athletes to produce customized probiotics – and what if those probiotics could give recipients access to some of the biological advantages that make those athletes elite?

A former NBA hopeful in the lab of George Church at the Wyss Institute asked that question a couple of years ago and the lab is now moving toward a startup to bring such products to market.

In related news, consider this: With 2015 sales of $115B, sports-based nutraceuticals made up the largest share of the global nutraceutical market, but probiotic-focused sports products made up less than 1% of those sales.

I’ll talk with Wyss Research Fellow JONATHAN SCHEIMAN and – a previous guest on Disruptive – Wyss core-faculty member GEORGE CHURCH.
Continue reading “Disruptive #10: Sports Genomics”





Disruptive #7: FISSEQ – Fluorescent In Situ Sequencing

Written on October 7th, 2016

unnamed-7

Until recently, to analyze many mRNAs simultaneously, scientists had to grind cells to a pulp, which left them unable to pinpoint those mRNAs within the cell. Developed by a team at the Wyss and Harvard Medical School, FISSEQ allows scientists to pinpoint thousands of mRNAs and other types of RNAs at once in intact cells, and stands to revolutionize clinical diagnostics and drug discovery.

Listen and subscribe to Disruptive on Soundcloud, iTunes, or Google Play.

http://harvard.wyss.edu

Disruptive #7 Transcript





Disruptive Episode #7 – FISSEQ – Fluorescent In Situ Sequencing

Written on October 5th, 2016

DISRUPTIVE #7: FISSEQ – Fluorescent In Situ RNA Sequencing
Hello, I’m Terrence McNally and you’re listening to DISRUPTIVE the podcast from Harvard’s Wyss Institute for Biologically Inspired Engineering. 

One of today’s guests, George Church, has made the point that as medicine moves from very blunt instruments – where you had to open up a chest all the way, for example, or had to use molecules that would hit almost every part of your body – now molecules can find one base pair out of six billion and change it – He says we need observational tools that can deal with that high level of resolution and comprehensiveness.

And we’re going to talk about one such tool. Fluorescent in situ RNA sequencing – F-I-S-S-E-Q – or FISSEQ.

Working copies of active genes — called messenger RNAs or mRNAs — are strategically positioned throughout living tissues, and their location often helps regulate how cells and tissues grow and develop. Until recently, to analyze many mRNAs simultaneously, scientists had to grind cells to a pulp, which left them unable to pinpoint where those mRNAs actually sat within the cell.

Now a team at the Wyss Institute and Harvard Medical School has developed a new method that allows scientists to pinpoint thousands of mRNAs and other types of RNAs at once – in intact cells.

FISSEQ could lead to earlier cancer diagnosis, help biologists better understand embryonic development, and even help map the neurons of the brain.

I’ll talk with George Church, Wyss Core Faculty member and co-founder of ReadCoor, the startup that will bring FISSEQ to market; Wyss lead senior scientist, Rich Terry, President, Co-Founder, and CTO of ReadCoor; and Shawn Marcell, Wyss Entrepreneur-in-Residence and founding Chairman/CEO of ReadCoor.

The mission of the Wyss Institute is to: Transform healthcare, industry, and the environment by emulating the way nature builds.

Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than any entity yet designed by humans. 

By emulating nature’s principles for self-organizing and self-regulating, Wyss researchers develop innovative engineering solutions for healthcare, energy, architecture, robotics, and manufacturing.
[02:06]

George Church is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and MIT. He’s Director of the U.S. Department of Energy Center on Bioenergy at Harvard and MIT and director of the NIH Center for Excellence in Genomic Science at Harvard. He has co-founded a number of companies, including ReadCoor.

Church earned a bachelor’s degree from Duke University in two years and a PhD from Harvard. Honors include election to the National Academy of Sciences and the National Academy of Engineering. He has coauthored hundreds of scientific papers, more than sixty patents, and the book, “Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves.”  [02:41]

To set the context for this episode, George Church offers an overview of the evolution of sequencing technology –

Church:       It dates back at least to the ’60s when RNA sequencing and protein sequencing were the main ways of getting insight. In the mid-’70s, ways to do DNA sequencing based on electrophoresis came into play. Those were automated and made less radioactive, more fluorescent. In the ’80s and ’90s, it switched from slab electrophoresis, capillary electrophoresis. None of these scaled particularly well.

Continue reading “Disruptive Episode #7 — FISSEQ — Fluorescent In Situ Sequencing”





Disruptive#6: Rapid, Low-cost, Paper-based Test for Zika

Written on June 24th, 2016

Disruptive-Zika-email-600x204

In early May, a rapid, low-cost, freeze-dried, paper-based, strain-specific diagnostic system for detection of the Zika virus was introduced by an international team of researchers led by James Collins of Harvard’s Wyss Institute for Biologically Inspired Engineering. The core of the test kit is a piece of paper that changes color in the presence of Zika virus RNA and produces results in two to three hours. University of Toronto biochemist Keith Pardee says that it should cost less than a dollar per test. And, according to Collins, in response to a new outbreak, a custom tailored diagnostic system could be ready for use within one week’s time.
In this 53-minute podcast, I speak with Collins and Pardee, and explore how they did it, what they learned, and what this might mean for the future. Listen and subscribe to Disruptive on SoundcloudiTunes, or Google Play.

http://wyss.harvard.edu

Disruptive #6 Transcript