DISRUPTIVE: CONFRONTING SEPSIS – Don Ingber and Mike Super

Written on October 14th, 2015

Sepsis4-rectangle

 

Welcome to DISRUPTIVE the podcast from Harvard’s Wyss Institute for Biologically Inspired Engineering.

In this episode of DISRUPTIVE, we will focus on: CONFRONTING SEPSIS.

Sepsis is a bloodstream infection in which the body’s organs become inflamed and susceptible to failure. The leading cause of hospital deaths, sepsis kills at least eight million people worldwide each year. It can be caused by 6 species of fungi and 1400 species of bacteria. Diagnosis takes two to five days, and every hour you wait can increase the risk of death by 5-9%.

“Even with the best current treatments, sepsis patients are dying in intensive care units at least 30% of the time,” says one of today’s guests, Wyss Senior Staff Scientist Mike Super.

A new device developed by a team at Wyss may radically transform the way we treat sepsis. Their blood-cleansing approach can be administered quickly, even without identifying the infectious agent. In animal studies, treatment with this device reduced the number of targeted pathogens and toxins circulating in the bloodstream by more than 99%.

The mission of the Wyss Institute is to: Transform healthcare, industry, and the environment by emulating the way nature builds, with a focus on technology development and its translation into products and therapies that will have an impact on the world in which we live. Their work is disruptive not only in terms of science but also in how they stretch the usual boundaries of academia.

http://wyss.harvard.edu

Don Ingber and Mike Super’s Interview transcript

DISRUPTIVE: BIO-INSPIRED ROBOTICS features three separate interviews with (1) RADHIKA NAGPAL, (2) ROBERT WOOD, and (3) CONOR WALSH

Written on October 7th, 2015

robertcollage 

 

Welcome to the second episode of my new monthly podcast series produced with Harvard’s Wyss Institute for Biologically Inspired Engineering.

DISRUPTIVE: BIO-INSPIRED ROBOTICS features three separate interviews with (1) RADHIKA NAGPAL, (2) ROBERT WOOD, and (3) CONOR WALSH. From insects in your backyard, to creatures in the sea, to what you see in the mirror, engineers and scientists at Wyss are drawing inspiration to design a whole new class of smart robotic devices

In this one, ROBERT WOOD discusses new manufacturing techniques that are enabling popup and soft robots. His team’s ROBO-BEE is the first insect-sized winged robot to demonstrate controlled flight.

In part one, RADHIKA NAGPAL talks about her work Inspired by social insects and multicellular systems, including the TERMES robots for collective construction of 3D structures, and the KILOBOT thousand-robot swarm. She also speaks candidly about the challenges faced by women in the engineering and computer science fields.

In part three, CONOR WALSH discusses how a wearable robotic exosuit or soft robotic glove could assist people with mobility impairments, as well as how the goal to create real-world applications drives his research approach.

The mission of the Wyss Institute is to: Transform healthcare, industry, and the environment by emulating the way nature builds, with a focus on technology development and its translation into products and therapies that will have an impact on the world in which we live. Their work is disruptive not only in terms of science but also in how they stretch the usual boundaries of academia.

http://wyss.harvard.edu/
– See more at:

DISRUPTIVE: BIO-INSPIRED ROBOTICS Radhika Nagpal Interview

DISRUPTIVE: BIO-INSPIRED ROBOTICS Conor Walsh Interview

Robert Wood’s interview transcript

DISRUPTIVE: BIO-INSPIRED ROBOTICS features three separate interviews with (1) RADHIKA NAGPAL, (2) ROBERT WOOD, and (3) CONOR WALSH

Written on October 7th, 2015

Disruptive radhika2   

Welcome to the second episode of my new monthly podcast series produced with Harvard’s Wyss Institute for Biologically Inspired Engineering.

DISRUPTIVE: BIO-INSPIRED ROBOTICS features three separate interviews with (1) RADHIKA NAGPAL, (2) ROBERT WOOD, and (3) CONOR WALSH. From insects in your backyard, to creatures in the sea, to what you see in the mirror, engineers and scientists at Wyss are drawing inspiration to design a whole new class of smart robotic devices

In this one, RADHIKA NAGPAL talks about her work Inspired by social insects and multicellular systems, including the TERMES robots for collective construction of 3D structures, and the KILOBOT thousand-robot swarm. She also speaks candidly about the challenges faced by women in the engineering and computer science fields.

In part two, ROBERT WOOD discusses new manufacturing techniques that are enabling popup and soft robots. His team’s ROBO-BEE is the first insect-sized winged robot to demonstrate controlled flight.

In part three, CONOR WALSH discusses how a wearable robotic exosuit or soft robotic glove could assist people with mobility impairments, as well as how the goal to create real-world applications drives his research approach.

The mission of the Wyss Institute is to: Transform healthcare, industry, and the environment by emulating the way nature builds, with a focus on technology development and its translation into products and therapies that will have an impact on the world in which we live. Their work is disruptive not only in terms of science but also in how they stretch the usual boundaries of academia.

http://wyss.harvard.edu/

– See more at:

DISRUPTIVE: BIO-INSPIRED ROBOTICS Robert Wood Interview

DISRUPTIVE: BIO-INSPIRED ROBOTICS Conor Walsh Interview

Radhika Nagpal’s interview transcript

DISRUPTIVE DISRUPTIVE: CONFRONTING SEPSIS – Don Ingber and Mike Super

Written on October 2nd, 2015

DI-MS-device-logo-horiz

 

 

 

Wyss Institute for Biologically Inspired Engineering

DISRUPTIVE: CONFRONTING SEPSIS

Terrence McNally interviews Don Ingber and Mike Super

[00:04] Hello, I’m Terrence McNally and you’re listening to DISRUPTIVE the podcast from Harvard’s Wyss Institute for Biologically Inspired Engineering.

The mission of the Wyss is to: Transform healthcare, industry, and the environment by emulating the way nature builds.

Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than any entity yet designed by humans. By emulating nature’s principles for self-organizing and self-regulating, Wyss researchers develop innovative engineering solutions for healthcare, energy, architecture, robotics, and manufacturing.

 

They focus on technology development and its translation into products and therapies that will have an impact on the world in which we live. So the Wyss is not interested in making incremental improvements to existing materials and devices, but in shifting paradigms. In this episode of DISRUPTIVE, we will focus on: CONFRONTING SEPSIS

Sepsis is a bloodstream infection in which the body’s organs become inflamed and susceptible to failure. The leading cause of hospital deaths, sepsis kills at least eight million people worldwide each year.

It can be caused by 6 species of fungi and 1400 species of bacteria. Diagnosis takes two to five days, and every hour you wait can increase the risk of death by 5-9%. The treatment challenge grows more complex as the prevalence of drug-resistant bacteria increases while the development of new antibiotics lags.

“Even with the best current treatments, sepsis patients are dying in intensive care units at least 30% of the time,” says one of today’s guests, Wyss Senior Staff Scientist Mike Super.

A new device developed by a team at Wyss and inspired by the human spleen may radically transform the way we treat sepsis. Their blood-cleansing approach can be administered quickly, even without identifying the infectious agent. In animal studies, treatment with this device reduced the number of targeted pathogens and toxins circulating in the bloodstream by more than 99%.

Although we focus here on treatment of sepsis, the same technology could in the future be used for other applications, including removing microbial contaminants from circulating water, food or pharmaceutical products.

Now let’s explore the development process with Mike Super and Wyss Founding Director, Don Ingber.

[02:25] Ingber leads the Biomimetic Microsystems platform at Wyss in which micro-fabrication techniques from the computer industry are used to build functional circuits with living cells as components. He’s authored more than 400 publications and over 100 patents.

[02:40]

The seeds of Wyss’s therapeutic sepsis device go back over twenty years. I ask Don to talk about some of the earlier explorations and findings that laid the foundations for the current work.

Ingber:

[02:51] I was interested in mechanics and biology, this idea that mechanical forces are as important as chemicals and genes, and that the shape of the cell is important. To get at testing that, I come up with the idea of using little magnetic particles that I would coat with molecules that would bind to specific receptors on cells.

Continue reading “DISRUPTIVE DISRUPTIVE: CONFRONTING SEPSIS — Don Ingber and Mike Super”

DISRUPTIVE: BIOINSPIRED ROBOTICS Radhika Nagpal

Written on July 30th, 2015

 

Disruptive radhika2  

DISRUPTIVE: BIOINSPIRED ROBOTICS
RADHIKA NAGPAL

Host Terrence McNally interviews Radhika Nagpal. Podcast published July 27, 2015.

McNally:
Hello, welcome to DISRUPTIVE the podcast from Harvard’s Wyss Institute of Biologically Inspired Engineering. I’m your host, Terrence McNally.

The mission of the Wyss Institute is to: Transform healthcare, industry, and the environment by emulating the way nature builds.

Our bodies — and all living systems — accomplish tasks far more sophisticated and dynamic than anything yet designed by humans. By emulating nature’s principles for self-organizing and self-regulating, Wyss researchers develop innovative engineering solutions for healthcare, energy, architecture, robotics, and manufacturing.

They focus on technology development and its translation into products and therapies that will have an impact on the world in which we live. At the Wyss, folks are not interested in making incremental improvements to existing materials and devices, but in shifting paradigms. In this episode of DISRUPTIVE, we will explore: BIOINSPIRED ROBOTICS.

Many of the most advanced robots in use today are still far less sophisticated than ants that “self-organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa.

From insects in your backyard, to creatures in the sea, to what you see in the mirror, engineers and scientists at Wyss are drawing inspiration to design a whole new class of smart robotic devices.

We’re going to explore this exciting territory in a three-part episode of DISRUPTIVE, featuring three members of the Wyss faculty, CONOR WALSH, ROBERT WOOD, and RADHIKA NAGPAL.

[01:30]
Nagpal’s Bio

Today’s guest, Radhika Nagpal is the Fred Kavli Professor of Computer Science at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Bioinspired Robotics Platform Co-Leader and a Core Faculty member at the Wyss Institute. Naming her one of the ten scientists and engineers who “made a difference” in 2014, NATURE Magazine wrote that her “self–organizing, swarm robotics are today’s state of the art in collective artificial intelligence.”

Radhika is developing programming paradigms that enable new types of autonomous robotic systems to mimic the collective behaviors of living creatures to meet real-world challenges. Inspired by social insects and multicellular systems, she’s developing sensor networks that monitor the environment, and robots that collectively construct or self-assemble complex structures without human supervision. Her recent work includes the Termes robots for collective construction of 3D structures, and the Kilobot thousand-robot swarm.

Welcome, Radhika Nagpal to DISRUPTIVE…In order for listeners to get a sense of you as a person, beyond your work and ideas, Rahdika, can you take us back and tell us a bit about your path?

[02:37]
Nagpal’s Path

Continue reading “DISRUPTIVE: BIOINSPIRED ROBOTICS Radhika Nagpal”